8x^2+62x=17

Simple and best practice solution for 8x^2+62x=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x^2+62x=17 equation:



8x^2+62x=17
We move all terms to the left:
8x^2+62x-(17)=0
a = 8; b = 62; c = -17;
Δ = b2-4ac
Δ = 622-4·8·(-17)
Δ = 4388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4388}=\sqrt{4*1097}=\sqrt{4}*\sqrt{1097}=2\sqrt{1097}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{1097}}{2*8}=\frac{-62-2\sqrt{1097}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{1097}}{2*8}=\frac{-62+2\sqrt{1097}}{16} $

See similar equations:

| |1.5-3x|=-2 | | −4=x−7 | | 3/2-x=5 | | 9+12/5=2q-11/7 | | 2^x-4=44/3 | | 3(2^(x-4))=44 | | 3(2^x-4)=44 | | 1/2x+2/3=5 | | -2/3x+1=3(2-x) | | 2p-14=0 | | (180+2x)/13=x | | 3(1-x)-2x=3 | | y+13=1/2 | | 2x^2+2x-201=0 | | 2x+16=116-8x | | Z^4+5z^2=0 | | 3(3x+3)=42 | | 7x+6=36-3x | | 6x-9-3x-3=0 | | 9-5x=2x-15+x | | (a-9)(a+6)=0 | | 6x-9-3x-36=2x | | 36x2+154x-36=0 | | 7x+2=-5x+12 | | 1/6=4x-2 | | (x+6)=x/2+x/3 | | (6x-15)(3x+21)=0 | | -16x-20=-8-7x-6 | | 15x^2-6x-221=0 | | 8x-26=2x+16 | | (6x^2)+12x+6=0 | | x³+8=0 |

Equations solver categories